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Let H, H+ be real Hilbert spaces with H+ < H algebraically and topologically
and H+ dense in H. Let H_ be the dual of H+ via the inner product of H and
denote by L (H B ) the space of symmetric bounded linear operators from H into
H_. We prove that the evolution of the electric displacement field in a simple
class of holohedral isotropic diglectrics can be modeled by an abstract initial-

value problem of the form

t
u, -ou = Lu+ foM(e-m)u(t)dr = B(t)u , 0 < t < T

el e T - R

3 . |
where I-: € LS(H+’ H_)’ g(t) € LZ(EO,T); LS(H"" H_))) B(t) € C ([OyT))’ and o 1s |
an arbitrary (non-zero) real number. By employing a logarithmic convexity |
argument we derive growth estimates for solutions of the above system which lie

in uniformly bounded classes of the form

{u € c? ([o,T); H) | sup IIUl] < N}

-~

{o,T)’ s
for some N > 0; our results are derived under a variety of assumptions concerning

o, 2(t), and the inital data (without making any definiteness assumptions \\\\\
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on the operators L or M(t), O < t < T) and are used to obtain growth estimates

for the electric displacement field D(x,t) in rigid dielectrics which satisfy

constitutive relations of the form

D(x,t) = a E(x,t) + [§ ¢(t-DE(x,1)d7

e
£
i
t
i

H(x,t) = b B(x,t) + [o ¥(t=T)B(x,1)dT

where E, H, B are the usual electromagnetic field variables, (x,t) ¢ @ x [0,T),
Q E.R3 is bounded region with smooth boundary 3Q, a, and bo are positive

constants, and ¢, Y are non-negative monotonicélly decreasing functions of t.
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1. Introduction

In recent work [1] - [4] this author has derived stability and growth
estimates for specific classes of solutions to initial-value problems

associated with abstract integrodifferential equations of the form

t
By " Ha J_, K(t-T)u(T)dT =0, 0 <t <T, (1.1)

In this equation u e CZ([O,T); H+) with u, € Cl([O,T); H+), and

U, € ¢ ([0,T);H ), where H+, H_ areHilbert spaces which are defined as

follows: Let H be any real Hilbert space with inner-product <,> and let

H+ < H (algebraically and topologically) with H+ dense in H; denote the

inner-product on H+ by <>, Then H_ is the completion of H under the ;3
norm 3'
i
s s

If we let L(H+,H_) denote the space of bounded linear operators from

H into H_ then in (1.1) we only require that 3

(i) § € L(H+,H_) is symmetric and

(11) K(8), K (£) € L2((==,%); L(H,,H))

where Kt denotes the strong operator derivative of K; no definiteness
assumptions are placed on N and thus the initial-value problem obtained

by appending to (1.1) the initial data

u(0) = £, Et(O) =8; f,g € H+ iy & (1.3a)

and the prescription of the past historijhich is given by. - :




g(r) = g(r), -2 <T<O0 (1.3b)

is, in general, non well-posed. If we restrict our attention to classes
of bounded solutions to (1.1) - (1.3) of the form
3 N ={v ¢ CZ([O,T); H )| sup || v(£)I], = Nz}then it is possible to derive
: : A 78 e S
g ]
both stability and growth estimates for sclutionsu € N under the assumption

that K(0) satisfies

E - <v,K(0)v> > Kllv'li, ‘Iv € H+ (1.4a)

: where

f K 2 Wl sup |IK_(£)]] (1.4b)
2% o Sogks L, ,B)

with @ the embedding constant for the injection i: H = H+.
The technique used in [1] - [3] is based on a logarithmic convexity
argument first employed by Knops and Payne [5] for the abstract wave

equation obtained from (1.1) by setting K(t) = O; a different logarithmic

convexity argument was employed by this author in [4] to derive continuous

data dependence theorems for the system (1.1), (1.3a), (1.3b). The results

obtained in [2] - [4] are applied in those papers to obtain growth, stability,

and continuous data dependence theorems for solutions to initial-value
problems associated with the equations of motion for linear isothermal
viscoelastic materials; the spaces H, H+, and H_, as well as the operators
§ and E(t), are constructed and no definiteness assumptions are made on
the initial value of the relaxation tensor. In the case of a one-

dimensional homogeneous (isothermal) linear viscoelastic body, it is shown

in [3] that the conditions (l.4a), (1.4b) are equivalent to the requirement

that




§'(0) < -« with k > WI( sup [§(t)[) (1.5) |
[o,T)

where g(t) is the relaxation function of the material. 4

More recently we have turned our attention to the way in which integro-
differential equations arise in the theory of polarized non-conducting
material dielectrics, i.e., in [6] we have considered the following problem: b
Let E, §, g,_and P denote, respectively, the electric field vector, the
magnetic flux density, the polarization vector, and the electric displacement
in a non-conducting medium; the polarization and electric displacement

vectors are related via

D=€c E+ P, € = const. (1.6)
& o~ o

i,t), i=1,2,3, denotes a Lorentz reference frame, with the (xi)

If (x
rectangular Cartesian coordinates and t the time parameter, then Maxwell's

equations have the local form

9B

5§-+ curl E =0, divB =0 (1.7)
i oD
f curl H - 5% =0, divD=0 (1.8)

’ whenever the density of free current f = 9, the magnetization g = 9,
and the density of free charge QF = 0; in (1.7b), g represents the
magnetic intensity and is related to the magnetic flux density via
H= u;l g where Eouo = c-z, ¢ being the speed of light in a vacuum. A

~

determinate system of equations for the fields appearing in Maxwell's

equations is obtained by specifying a set of constitutive relations. For

example, in a vacuum P = 0 so

a1 G R




4

D=¢E, H=y " B (1.9)
while in a rigid, linear, stationary nonconducting dielectric

D =c¢°E, B= u°H (1.10)

where € and U are constant second order tensors; the constitutive equations
(1.10) were given by Maxwell in 1873 [7]. 1In [6] we considered the set of
equations which define the dielectric as being a Maxwell-Hopkinson material,

i.e., (1.102) and
D(t) = €E(t) + [ ¢(t-1)E(T)dr (1.11)

where € > 0 and ¢(t) is a continuous monotonically decreasing function for

t 2 0; following a suggestion of Maxwell,
constitutive equations (1.102), (1.11) in

on the residual charge of the Leyden jar.

Hopkinson [8] employed the
connnection with his studies

It was demonstrated in [6]

that (1.11) in conjunction with the local Maxwell equations (1.7), (1.8), 1
yield certain integrodifferential equations for the evolution of the |
electric field and the electric displacement field, respectively, in a
non-conducting material dielectric of Maxwell-Hopkinson type.

By introducing suitable Hilbert spaces H, H+, H_ and operators
N € L(H+,H_) and K(t) € Lz((—w,w); L(H+,H_)) we were able in [6] to
treat the initial-boundary value problem for P, as a special case of
the abstract initial-value problem (1.1), (1.2) (in [6] we assumed that
P(T) By =maR S 0). From the stability and growth estimates derived
for the electric displacement field P, corresponding estimates were then

3
derived for the electric field E( )

bv emploving the relation

(1) For an excellent discussion ofthe qualitative behavior of electromagnetic
fields and dielectric constants in dielectrics of Maxwell-Hopkinson type
(especially in the presence of an applied time periodic electric field) we refer
the reader to the monograph of H. Frohlich, Theory of Dielectrics, Oxford U. Press

(1949).

PP




E(t) = €7D(e) + €77 [ 8(t-1)D(1)dt (1.12)

which is obtaining by inverting the Maxwell-Hopkinson relation (1.11) via
the usual technique of successive approximation.

The constitutive relations associated with the Maxwell-Hopkinson
theory, i.e., (1.102) and (1.11), embody three basic simplifying assumptions:
they are linear, they effect an a priori separationof electric and magnetic
effects, and they do not allow for magnetic memory effects. As early as
1912 Volterra [9] proposed extending the Maxwell-Hopkinson theory to treat
the case where the dielectric is anisotropic, non-linear, and magnetized;

his constitutive relations were of the form

&

D(x,t) = €*E(x,t) + D (E(x,T))) (1.13a)
t

E(i‘st) o E'g(f,t) + § (g(?fy-[) (1.13b)

and it can be shown that (1.13a) reduces to (1.11) if the functional

P is linear and isotropic and the body satisfies various restrictions
which follow from considerations of material symmetry. Of course, (1.13a),
(1.13b) still effect an a priori separation of electric and magnetic
effects and, as pointed out by Toupin and Rivlin [10], such a separation
is inadequate with respect to predicting such a phenomena as the Faraday
effect in dielectrics. In [10] Toupin and Rivlin postulated constitutive
equations of the form

- v)
(e J 6.3 74kt) (1.14a)

-~

n
pie) = J & 2V
% v=0 ~ % v=0 ~

+ [5, ¢ (e, E@dr + [T ¢,(5,) + BT




e x‘\;_‘!‘;gf Iﬁﬁﬁ(ﬁyﬁ;.:. P

L2028 (1.14b)

n
®+ ) b,

)
H(t) = Z d °E
v=0 ¥ v=0

# [S 9,60 ¢ B(Dar + [Ty, (6,1) ¢+ E(Dar

(v)(t) = dvE(t)/dtv and a_,..., d  are constant tensors; the kernels
= pe ¥

where E N)

¢1,..., wz are taken to be continuous tensor functions of t and T which

satisfy growth conditions of the form
6,(t,0) < e/(e=D)*P, p > 0

Toupin and Rivlin [10] also assumed that the dielectric does not exhibit
aging and as a consequence it follows that P(t) and E(t) are periodic
functions whenever E(t) and §(t) are; this latter result, when combined
with the hypothesized growth estimates on the kernel functions, and early
results of Volterra on the theory of functionals [9], yields the conclusion
that 91,..., ?2 depend on t and T only through the difference t-T (the
converse of this result is also true). Toupin and Rivlin [10] then prove
that if the dielectric exhibits holohedral isotropy, i.e., if it admits

as its group of material symmetry transformations the full orthogonal group,
then g(t) may be eliminated from (1.14b) and P(t) may be eliminated from
(1.14a); for a holohedral isotropic dielectric the constitutive equations

(1.14a), (1.14b) reduce to

n
pe) = [ a Y@ + [feenE@ar (1.15a)
oyl 0
B = 1 5™ @ + [£pe-0Bar (1.15b)
L abs B

where ¢ = ¢1, Y = wl and where (due to the assumption of holohederal

isotropy) a2, bv’ ¢l and wl are all proportional to the identity tensor
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and thus appear as scalars in (1.15a), (1.15b).
In this paper we examine the special case of (1.15a), (1.15b) which
corresponds to the assumptions a, = 0, bv =0, v21and E(T) = 0,

B(T) = 9, @< T <0, 1.e,
D(t) = a_E(t) + f; ¢(t-T)E(T)dT (1.16a)
H(t) = b_B(t) + j; Y(t-T)B(1)dT (1.16b)

This special case of a holohedral isotropic non-conducting material
dielectric still embodies a separation of electric and magnetic effects
in the constitutive theory but generalizes the Maxwell-Hopkinson theory
in that magnetic memory effects are taken into account through the presence
of the kernel function {(t). In the next section we will formulate an
initial-boundary value problem for the electric dispiacement field P(t)
in a holohedral isotropic dielectric; provided y(0) # O, P(t) will be
shown to satisfy a (non-homogeneous) integrodifferential equation. By
introducing suitable Hilbert spaces and operators, the initial-boundary
value problem for P(t) is easily demonstrated to be equivalent to an
initial value problem for an abstract integrodifferential equation and
growth estimates for specific classes of solutions to this abstract
problem are then obtained by employing a suitable logarithmic convexity

argument.

2. Initial-Boundary Value Problems for Holohedral Isotropic Dielectrics

Let (xi,t) be a fixed Lorentz reference frame; the local forms of

Maxwell's equations are then given by (1.7), (1.8). Let Q E.R3 be a




bounded region with boundary 980 and assume that 92 is sufficiently smooth

so that the divergence theorem may be applied. Finally, assume that & is
filled with a holohedral isotropic non-conducting dielectric material

which is non-deformable and which satisfies the hypotheses of £1 so that,

in §, the electromagnetic field satisfies consitutive relations of the

form (1.16a), (1.16b) where we assume that a =0 bo > 0 and ¢(t), V(t)

are monotonically decreasing functions which are (at least) twice continuously

¢(3)

differentiable on [0,®) with (t) a bounded integrable function on

[0,9). The basic result of this section is

Theorem II.1 The evolution of the electric displacement field P(x,t) in
any holohedral isotropic non-conducting material dielectric (which con-
forms to the constitutive hypotheses (1.16a), (1.1€éb)) is governed by

the system of equations

3%, 3, 3 3%p, s
F + \P(O) ‘st_ - bO W(O)[coéijdj‘e -3_}—(33_}{2. - Dij .
. 37D, (1) .
b, [6@E-DD (1) - 0 (=188, 5;;522—)d1 = b_ ¥(t)p, (0)

where e l/ao@(O), éo(t) = <I>(t:)/ao and

©©

o(t) = I (-1 (t)

n=1

"(t) =[5 ¢ (t-1¢" (v)ar, 0 2 2 52

3 -1
¢ (t) = a_ o(t)

L et o Cae o
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with an analogous defintion for ¥(t) in terms of y(t).

Proof By using succe:sive approximations we may invert the constitutive

relations (1.16a) and (1.16b) to obtain, respectively,

1 Tk
E(t) = a D(t) + a o ¢(t-1)D(1)d1 (2.3a)
B(t) = == H(t) + = [ y(t-r)H(r)dr (2.3b)
el b, ~ b 40 -

with ¢(t) and ¥Y(t) defined in terms of ¢(t) and yY(t), respectively, as
indicated in (2.2). From (2.3a) and the second Maxwell relation in (1.8)
div E(t) = 0 so

AE(t) = - curl curl E(t) (2.4)

From (2.3b), however, and the first Maxwell relation in (1.7)

curl E(t) = - B = - Bl; H - % Y(OH(E) - [o ¥, (t-DH(D)dr (2.5)

Therefore,

- curl curl E(t) = é (curl B)  + -bl—o ¥(0) (curl H(t)) (2.6)
+ [5 ¥, (t-Deurl H()dr = é D, + ;1: ¥(0)D,

+ [§ ¥, (e=0D_()dt

where the second relation in (2.6) follows from the first Maxwell equation

in (1.7). Combining (2.62) with (2.4) and employing (2.3a) we obtain




b b
L t
D, + ¥(0)D_ + b [0 ¥ (£-1)D_(1)dT = ;fgg(:) + ;f fo ¢(t-T)AD(1)d1 (2.7)
However,
, S e : £ o <
fo ¥ (t-T)D_(T)dT = ¥(0)D(t) - ¥(£)D(0) + fo ¥ (t=T)D(1)d1 (2.8)

Substituting (2.8) into (2.7) we have on £ x [0,®):

~

Dtt + W(O)gt.+ boW(O)(E e é)g(t) (2.9)

t 5 .
+ b fo(th(t—T)E - ¢ (£=1)A)D(1)dT = b ¥(£)D(0).

where G l/ao Y(0) and ¢o(t) = ¢(t)/ao. Q. E. D.

In conjunction with he integrodifferential equation (2.9) we consider

initial and boundary data of the form

D(x, 0) = Do(f)’ Pt(x,o) = 91(§), x e { (2.10a)

9(§,t) = 9, (g,t) e 30 x [0,») (2.10b)

where 90, Pl are continuous on {l. At this point it is convenient to
recast the initial-boundary value problem (2.9), (2.10a), (2.10b) as an
initial-value problem for an integrodifferential equation in Hilbert
space.(” As in [6] we let C:(Q) denote the set of three dimensional vector
fields with compact support in {{ whose components are in C:(ﬁ). We take

H = LZ(Q), i.e. the completion of C:(Q) under the norm induced by the

inner product

<v,w = jg v v, dx (2.11)

while the Hilbert space H+ is taken to be Hi(Q) the completion of

be

(3 We specify, below, three spaces H, Hy, and H. which are taken toﬂbertain
Sobolev spaces in the application and which satisfy certain mild require-
ments in the general development,

baitiee el B e b sl o




C:(Q) under the norm induced by the inner product

Bv 3\
s the R @ S
o}

Finally, H_ = H-l(Q), the Hilbert space obtained by completing C:(Q)
under the norm

f f awi dw i 5
Hvll = sup [|fgv,w dxl/( ———-———-dx) ]
~ -1 1 (9, G ¢ Q 9x. 9x

weH

(2.13)

It is known that Hi(ﬂ) E_LZ(Q) (both topologically and algebraically) and
that Hi is dense in LZ. We denote by w the embedding constant for the
inclusion map i: Hi(Q) - LZ(Q)'
1 -1 2 1 -1
Operators L ¢ L(Ho, H 7) and M(t) € L™ ((-=~,®); L(HO,H )) are now

defined as follows:

2
W), = b FO)e 5,6, 2K _ 5 v.1, veE@ (2.14a)
rohia. Ml bbbl v |y oxox, ~ "33 SR g
32 vV € Hl(Q)
Vk (o]
(b}(t)g) =b [‘{’(t)é jv - (t)6 jz o —] (2.14b)

j 14 t e (-w)m)

where the derivative are taken in the distribution sense. It follows
directly from these definitions and the smoothness assumptions on ¢(t)

and x(t) that

1) Le Ls(ni, i M(E) € LS(Hi, Bh, ¢t e (w9

(1) M () e LE((==,)5 LCH], BT

))

Lt g N A




where LS(Hi’ H-l) denotes the space of all symmetric bounded linear

operators from Hi into H—l and Mt is the strong operator derivative of

M(*). Thus the system (2.1), (2.10a), (2.10b) is equivalent to

) 4 .
D,, *+ ¥(0)D, - LD + [/ M(t-T)D(1)dt = b_¥(£)D_ (2.15)

D(0) = Dy D(0) = D

D, (2.16)

where 90, Pl € Hi and P € Cz([O,w); Hi). Actually, we shall be interested
in solutions of (2.15), (2.16) on finite time intervals of the form [0,T)
where T, O < T < =, is an arbitrary real number; this suggests that we
examine the following abstract initial-value problem: Let H, H+ be Hilbert
spaces with inner products <,> and <,>+, respectively, and assume that

H+ < H (algebraically and topologically) with H+ dense in H; define H_

as in (1.2). We consider solutions u e C2([0,T); H+) of the system

t
B, ~ou, - Lu* IO M(t-1)u(r)dr B(t)u , 0 <t <T (2.17)

st - kel E- R T P

where o # O is an arbitrary real constant, B(t) is any real-valued func-
tion such that B(t) exists a.e. on [0,T), L ¢ LS(H+,H_) and
M(e), Mt(-) € Lz([O,T); LS(H+,H_)). We assume that u, € Cl([O,T); H+)

and u__ ¢ C([0,T); H)).

£t

In §3 we derive some growth estimates for solutionc u(t) of the

system (2.17), (2.18), which lie in the set N. Our estimates will be

obtained under various combinations of the following hypotheses:

PPN S
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In §4 we apply our results to the system consisting of (2.1), (2.10a),

and (2.10b); at no point in this work do we make any definiteness assumptions

on the operators L or M(t), t € [0,T).

3. Some Growth Estimates

Let K(t) = !zllutll2 denote the kinetic energy associated with solutions
u of the system (2.17), (2.18) and P(t) = -%<u,Nu> the potential energy;
then E(t) = K(t) + P(t) is the total energy. Let Y and to be arbitrary

non-negative real numbers and define

F(t;Y.to) = Hg(t)ll2 o+ Y(t+to)2, Oxt<T® (3.1)

The growth estimates in this section all follow from the following

basic

Lemma Let u € N be any solution of (2.17), (2.18). Suppose that

~<v, M©O)v> < klIvilZ, W e, (3.2a)
with

K 2 YT sup ||M (3.2b)

[
- H
[O,T) t L(H+’ -)
Then there exists § > O such that for all t, 0 < t < T

2

FF" - F'? > “2F(2E(0) + u) + oFF' - 20F(y(t+t ) + 4f K(r)d1) (3.3)

+ 2F2f} B(D)<u,u_>dt - B(t)<u,u >) + 4FB(O) |1y |1?




S e

Proof From the definition of F(t;y,to), i.e. (3.1), we compute i
' & -
Fi(tyy,t) = 2<u,u > + Y(t+t ) (3.4)
F"(t;y,to) = 2|lutl|2 + 2a<u,ut> + 2<u,Lu> (3.5)

- 2<u, [o M(e-T)u(1)dr+28(t)<u,u > + 2y,

where we have made use of (2.17) in (3.5). Using the definitions of K(t),

E(t), we may rewrite (3.5) in the form

F"(t;y,to) = 2°<3’3t> + zs(t)<u,3°> ~ 2<y, f; M(t-T)u(1)dT (3.6)

+ 4(2K(t) +Y) - 2(2E(0) + y) = 4(E(t) - E(0))

However, for any 1, 0 < T <t «<T

E'(7) = <u_,u_ > - <u_,Lu> = allg.rll2 + B(T)<u_,u > 3.7)
- <u, [ M(r-0)u(0)do>

Therefore,

E'(t) = 20K(T) + B(T)<3T,uo> - ad? <l~1(‘l’), fg M(T-o)g(o)do> (3.8)

+ <u(1), [ M (1-0)u(o)do> + <u(r), M(O)u(1)>

Integrating this last result from zero to t and substituting for

E(t) - E(0) in (3.6) we obtain

F"(t;y,to) = 2a<u,ut> + 26(:)<u,uo> + 2<u, fg M(t=-7)u(7)dT> (3.9)

+ 4(2K() +Y) - 2(2E(0) + ) - 8o [ K(1)dT = 4f( B(1)<u_,u >dt

- 4fg <u(), [§ M (1-0)u(o)do>dr - 4[5 <u(r), M(0)u(1)>dt




Therefore,

2w 4F(2K() +) - F' 24 20F 2E(0) + YW 2aF(<u,u > - 4[( K(T)aT)

I"P"-F'
+ 2F(B(t)<u,u > - 2,(; B(T)<u_,u >d1) + zp<3,j; M(t-T)u(T)dT>

+ 4F[ <u(r), [{ M (1-0)u(o)do>dt - GE[5 <u(1), M(O)u(1)>dt

However, from (3.1), (3.4), the definition of K(t), and the Schwarz

inequality it follows that
G(t3v,t ) = 4F(t37,t ) (2K(E) +v) - F'z(t;y,to) 20
and, therefore, (3.10) yields the inequality

et - 12 2 - 2FQ2EO) + V) + aF Gl lul1? - 8 K(n)aD)

(3.10)

(3.11)

(3.12)

+ 2P(2f () B(t)<u,u >dT - B(t)<u,u >) + 4FB(O)| |y | 1% + 2F<u, [M(e-Du (DT>

- 4F[§ <u(r), [] M (1-0)u(o)do>dt - 4F[( <u(r), M(O)u(r)>dr
If we make note of the fact that
illull2 = F'(t;y,t ) - 2y(t+t )
dt’ '~ >0 o
then we can rewrite (3.12) in the form

2

FF" - F'2 2 - 2F(2E(0) + Y) + oFF' = 20F(y(t+t ) + 4[5 K(T)dD)

(3.13)

+ 2F(2f8 é('r)<u,uo>dT - B(t)<u,u >) + 4F8(0) [ u 11 +2F<g,f8§(t-r)g('r)dr>

- ar[é <u(1), [g M (1-0)u(o)do>dt - 4F f(t) <u(1), M(0)u(r)>dt

In order to complete the proof of the lemma we now use the hypotheses
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(3.2a), (3.2b) and the fact that u ¢ N to bound, from below, the sum of the

last three terms in (3.13), i.e.

I <u, f; M(t-T)u(T)dt] < llg(t)ilfglly(t-r)g(r)lldr (3.14a)

< wllu(e) 1, f;(llg(t-r)l!L(H+’H Y a1 dt

s wr( sup |lull)?

2
sup | IM(t) ] < wN°T sup |IM(t)]!
o - * L ,H) L(s, ,H)

0.3 7 %

and thus, as F(t;y,to) 20, 0gk<T,

t 2
2F<u, M(t-r)u(t)dt> 2 - 20N"T sup |IM(t)]] F(t;Y,t ) (3.14b)
e A 2908 6,0~ @ MApR) 9
Also,
- 4F[fcu(n), MO)u(r)>dt 2 4&F[]lu()]|fdr (3.15)

2
> 4T sup | IM_|| F/ S ju(m) |1 ar
(O U i

by virtue of (3.2a) and (3.2b). Finally
[§ <o), [§ M (t-0)u@)do>ar < [ri<ur), [ M (1-0)u(9)do>|dr (3.16a)
< [oHs@ UM 01 gy ) 112 1]d0)at

< wsup |IM

t T
(0,2) ~t|IL(H+,H_)IOIIE(T)||+(IOIIE(0)||+dg)dT

2
< wsup |IM [ SE () 11, d1)
lo,T) ~t L ,H)™0 '~ +

< Wl sup |IM |
[0,T)

t 2
AUTCRR R A

PR
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from which we easily deduce that

| - 4Ffjcu(n), [ M (1-0)u(0)do>dr (3.16b) |

2 - 4T sup |IM || FfSIum 12 ar

fo,1) -t L4 ,H)

Combining (3.13) with the estimates (3.14b), (3.152) and (3.16b) we

obtain the estimate (3.3) with

Ly 4 WNT L IMCe) 1 |

(Q.E.D.) (3.17)
T SR YL

With the preceding Lemma as a starting point we now begin our study
of the growth behavior of solutions to (2.17), (2.18) which lie in the
class N; in each of the cases examined below we assume that §(0) satisfies ]

(3.2a) for some Kk > 0 which satisfies (3.2b).

Case I: uo =Q0and a <0

In this case E(0) = kllglllz and the second expression on the right-

hand side of (3.3) is non-negative; thus

2

FE" - B2 2 = 2RIy, 117 4 W) - (afFE" (3.18)

for all t, 0 < t < T, where U is given by (3.17). However, for Y, to

| arbitrary nonnegative real numbers,
4 2 '
Ayto < AMlu(e)1° + Ay(e+e )™ = AF(t3v5t ) (3.19)

for any A 2 0. If, in particular, we choose

A= AGyit) = 2011wy 112+ w/ve (3.20)

then for all t, 0 < t < T, and all v, to 20

Ty

S S it i

LI W 2 7 e
FRENE) A8 RN S T R Lot



e~ e

2 [ . .
2(llglll + y) < A(Y.to)F(t,Y.to) (3.21)

and (3.18) may be replaced by the estimate

2

FF" - F'2 > - A(Y;to)Fz - lo|FF (3.22)

The differential inequatlity (3.22) now forms the basis for the following

growth estimate:

Theorem 1I11.1 Let u € N be any solution of (2.17), (2.18) with n = 0

and a < 0. Assume that M(0) satisfies (3.2a), (3.2b) and that T > 1/|a].

Then there exists a constant M > 0 such that
Mo 112 st 1T ° o g e cr (3.23)

where § is given by (3.27).

Proof From (3.22) and Jensen's inequality we obtain the estimate,

F(tiv.t ) s el [F(tl;y,to)e'“' IJGEF(tZ;y,to)elal *y (3.24)
(valid for 0 < tl L t2 < T) where
6(:) - (e-lalt e e-laltz)/(e"laltl = e—laltz) (3.25)

The interval [tl,tzj < [0,T) is any closed interval such that F(t;y.to) > 0,

tl £¢ & t2. However, it is a simple consequence of (3.24) and the

defintion of F(t;y,to) that F(t;y,to) Z 0 on [(0O,T) if F(E;y,to) = 0 for
any te (0,T). Thus, without loss of generality, we may assume that

F(t;y,to) >0, 0<t<T. Taking t, =0, t, =T in (3.14) we obtain

1 2

8 2 -
- W £ 2113
[yt2] 6[r(r;y,:o)e'“' ] (3.26)

F(t;v,t.) < el®!
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Be) = (e-lolt _ lalTy, (g | omlelTy (3.27)

We now choose Y = llti and then take the limit in (3.26) as t, + 4o,

Clearly, as

F(C;Yl/ti’ L llg(t)l!2 - (—tt—+ 1)?

(o]
; 2 2

lim F(t;1/t7,t ) = ||lu(t)||™ + 1 (3.28)

e e z

o]
for all t ¢ [0,T). Also, as u € N
lim F(T;l/tg,to) = 1lim (llu(T)ll2 + (é5-+ 1)2)) < szz +1 (3.29)
t o t 4o 3 o
(] o]

2 2 2 - Lo = e

lim A(l/to;co) = lim 2(||u1|| +1/t +u)=2(|lu1|l +u) = A (3.30)
£ e £ e " 2 ks

where U = wNZT sup | |M(t)|| . Thus, with y = 1/t2 and t = 4
0,7y ~ L(H+,H_) () o
in (3.26), we obtain the estimate

X X
—— t e ——e
Hae) 112 < e Th? + pel®! 7

y 0 Sk % T, (3.31)

and the result, which shows that llull2 is bounded above by an exponentially
decreasing function of t for all t € [0,T), follows by choosing M > O so
large that WNZ +1<M exp(-A/lal).

In contrast to the result contained in the statement of Theorem III.1,

we have following theorem concerning lower bounds for solutions u e N of

(2.17), (2.18).




-

Theorem I11.2 Let u e N be any solution of (2.17), (2.18) with . 0

and o < 0 and assume that M(0) satisfies (3.2a), (3.2b). If |a|l < 1 then
there exists T > O such that Ilu112 is bounded below by a monotonically

increasing exponential function of t, 0 < t < T.

Proof We bein by integrating the differential inequality (3.22) according
to the "tangent property"” of convex functions-assuming that F(t;Y,to) >0,
O <t <T, where T > 0 is an arbitrary real number; by the "tangent'
property" for convex functions we refer to the fact that the graph of a

@)

convex function on [0,T) lies above the tangent line to the curve at

any point t € [0,T). Thus, we obtain directly from (3.22) the estimate

Y(0- A :
d (O’Y’to) i TETF(O’Y’to) }(l-e-lalt)- IA[
a

F(t;Yato)EF(O;'Y;to)exP { lalF(O;Y,to) st (3.32)

However, F(O;Y,to) = Ytz and F'(O;y,to) = 2yt°. Therefore, if we set

Y = llti in (3.40) we obtain

llu(t)ll2 + [t/to + 132 > exp[x(t;to)J, 0<t«<T (3.33)

where
2
X¢1/e e )

R T T S SRR - - T 2
x(t,to) = Tal [(to + Tl ) (1-e ) A(l/to,to)t] (3.34)
and

2 v 1 2.2
A1/t 5t ) = 2([|u | |” + =+ w N'T sup ||M]] ) (3.35)

o’ o ol tg [0,1) -~ L(H+,H_)

(2) The inequality (3.22) and the assumption that F(t;Y,to) >0 on [0,T)

2
imply that £n(F(0;Y,t°)e_A/a ) is a convex function of 0 = e laft on

[0,T).




w
S —

We note, in passing, that x(o;to) = 0. For the sake of convenience we

now set
A(l/tg;to)
o i -y
(o]
Then
EE 3 & ole JeT1BIE ety g (3.36)
*o (o) o’ o 2

From (3.36) it follows immediately that x'(t;to) >0

1 e(t )
for 0 < t < ol £n
A(1/t

take the limit in (3.33) as to -+ 4 and obtain

2
} provided e(to) > A(l/to,to). We now

O Njo

;to)

llu(t)ll2 + 1 > exp[ lim x(t;to)J, Bst=<T (3.37)
& t >
But -
1im . 1 -lalt
X(t,to) by =7 [ lim e(to)(l-e ) (3.38)
td+kn td+k»

2,
- 1lim A(l/to,to)J

t e
o
= Az (l-e']“’t) -t = x(t)
lal
where X is given by (3.30). Also
=43 ’(‘*-lo"t (3.39)
Lim y'(t;t ) = = 3(t) = ACE——— - 1) .39
o dt la)
to-vho
and, therefore,
SUE) 5 0, 0 £ ¢ i lntd (3.40)
X o lal “ lal

if |al < 1. The statement of the theorem now follows with T = T%ﬁ-ﬁn(TiT), f.e.,




1

||g(t)I|2 +1 2 exp(X(£)), 0 < t < %

where X(t), as determined by (3.38), is nonnegative and monotonically

¥ 1
increasing on [0, Tal ﬂn(lal)).

Case 11: Y, =0and a > 0

In this case the expression H(t;Y;to) s - ZaF(Y(t+t°)4-4f;K(T)dT

can not be dropped from the differential inequality (3.3).

a >0, (3.3) with u, = 0 implies that

02

" s 2 ¥ - t 2
FF" - F'" 2 = 2F(Jlu, |1 + ) + oFF' - 20F(y(T+t ) +2[ | lu | 1%d7)

In order to proceed further we shall need the following

Lemma Let u € N be any solution of (2.17), (2.18) with 2

exists a real-valued continuous function ha(t)’ defined for 0 < t < T,

such that

Bt 2 2
% follngi dt < [y 117 + h(T), 0t <T

Proof: From the identity

t
= u dT + u

o & ~tt 1*

and (2.17), we obtain

~

Thus,

As £t < T and

Then there

u = + qu + fg Lu(T)dT - f;f; M(t-0)u(0o)dodTt

(3.41)

(3.42)

(3.43)

(3.44)




11 s Ny Il +alluol] + f;ilgliL(H+,H_)llg(T)ll+dI

+ g fglly(t—o)llL(H+’H_)lIg(O)II+dod1

IA

~

0,T)
2
t
+ — sup |IM(T)!!I sup |lu(T)l|
¢ fo,8) L(H+’H-)[o,'r) e id
< ||gl|| + Pa(t)[Sup llg(’f)ll+
Q,T)
where
t2

Pa(t:) = aw + t]lL] 'L(H+,H_) +5 [gug) | llld(t)llL(H+’H_)

Clearly pa(t) < pa(T), for all t € [0,T) and, as u € N

llug Il s ugll + Ny (), 0<t<T
Therefore,
t 2 2 2.2
follgTII dt < 2e(llu 17 + Ny (1)), 0 st <T
and the lemma follows with
2.2
hy (£) = N (£)

If we combine (3.42) with (3.43) we obtain

FF" = F'z

2 - 2F(||ulll2 + 1) + oFF'
where ; > 0 is defined by

~ 2
M= aly(T+e ) + 4T(1|31|l + ha(T))3

gy |1+ @l lw(@11, + eliLlly g g 5 sw HOll

+

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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Choosing
gy 21 12+ )
A o= (Y;to) = = 5 (3.52)
e,
we have
" l2 * 2 ]
FF" - F z-A(y;to)F +oFF', 0t <T {3.:53)

If we apply Jensen's inequality to (3.53) we obtain

Az % %
e & M
F(t;Y.to) <e [Ytol [F(T;Y,to)e ] ot O (3.54)
where
*
d (t) = (eat - eaT)/(l—eaT), 0<t=<T (3.55)

Taking Y =-33 in (3.54), extracting the limit as to + 4+, and then choosing
to -X_*-T
Q > 0 so large that wZNz + 1< Qea we obtain the estimate
A*
Huey 112 < g2 *8e% L edtet (3.56)

To close out our study of the case P 0, ¢ > 0 we now integrate the

differential inequality (3.53) according tu the "tangent property" of convex

functions and we obtain

Ve - e ’Yt2 .
F(t3v,t,) 2 y:i wxp ° 2 b + % ¢ (3.57)
-G'Yto

* *
which, with vy = l/tz, A = (l/tz;to), reduces to

* *
Ha 112+ (& + D2 2 ep (125 - 2300 + 2 o] (3.58)
(o} a (o}

Were we to follow the arguments previously employed we would, at this point,




L T e R R o

take the limit in (3.58) as t° + 4+, This procedure, however, does not
lead to a viable lower bound for Ilgll2 in this case. It is worthwhile,

however, to examine the function

* *
A Grit ) X (y:e )
; = o 2. . Bt o't
J(t,Y.to) g ¢ 3 s )e(1-e” ") + = (3.59)
o o
Clearly, J(O;y,to) = 0 for arbitrary nonnegative constants Y, to. Also
2\ (yst ) A vst )
' . = L Y3 (o) ot Y3 o
I (e5y,t ) = (to e i T e i (3.60)
*
from which, by the defintion of A , it follows that
2
(ayto) J'(esy,t ) = (k. + ky)@- O“:)+ t (3.61)
2 Y o 1 2'Y e ay . .
where
k, = 1 112Q + &m) + § + 4aTh (1) (3.62a)
k2 =1+ qT (3.62b)
Thus, if we choose
(k,+k,Y)
- 4l 02 QT
to to,y = o (e =1y, Y >0 (3.63)

then J'(t;y,to Y)'>O for all t, 0 < t < T, and each real Yy > O, and we

’

can state the following result:

~

Theorem III1.3 Let u € N be any solution of (2.17), (2.18) with . 0
and o > 0 and assume that M(0) satisfies (3.2a), (3.2b). Then for any
T > 0 there exists Q > 0 such that IIuII2 satisfies (3.56) and, for each

real y > O,IIuH2 also satisfies




2

2 2 ¥
fluCe) [T + Y(t+to’Y) 2 Yto,Y exP[J(t,Y.to,Y)]. 0st<? (3.64)

where to Y is defined by (3.6la), (3.62b), and (3.63) and J(t;Y,to Y)’
t] t]

defined by (3.59) with to = to ¥’ is nonnegative and strictly monotonically
’

increasing on [0,T).
The results obtained in cases I and II did not involve any hypotheses

concerning the sign of the initial energy E(0); as we assumed . =0 in

~

both cases, E(0) = %Hulll2 >0 if u; # 0. 1In the cases considered below

we remove the restriction that u, = 0.

~

Case III: u, # 0, a <0, and B(t) =0, 0 <t < T.

In this case (provided we use the fact that o < O to delete the term

H(t;Y,to» inequality (3.3) reduces to

2% 2F(I|51|12 - <u Lu> 4 p) - lalFF* (3.65)

FF" - F' ~0’~

)

with u given by (3.17). We now assume that the initial data uo, u1 satisfies

-~

Ny 117 = <ug,Lug>< - @ (3.66)

where | = wNZT sup IIM(t;)IIL(H H) Taking y = O in (3.65) we obtain
EOSTY +’ -

F(e) = Hu 15

F(t)F"(t) - [F'(£)1% = - |a|F(£)F'(t), O <t <T, (3.67)
Jensen's inequality then yields the upper bound
llg(t)ll2 < Ilgollz5 lIg(T)ll2(1'6>. 0st<T (3.68a)

We note that the hypothesis that u ¢ N, and (3.68), imply that there exists




R > 0 such that

1-8 28

||uo|l 1 B St ST (3.68b)

~

llu(:)ll2 <R

However, as (3.66) can not be valid for |lu°ll sufficiently small, (3.68b)
represents only an upper bound on ||u(t)|]| in terms of Iluoll and not a
stability estimate. A better result is fcund by integrating (3.67) according

to the "tangen; property" of convex functions; in fact, directly from (3.32)

with A = 0 and F(t;Y,to) replaced by F(t) = llu(t)ll2 we obtain
2<u, ,u > {d
Ha 112 2 e 112 exp [—=2=0 o™ %5 ) o< e <1 (3.69)
laillgoll

From the estimate (3.69) it is obvious that if either <u°,u >=0 or

u, = 0 (and <u_,Lu > > ii) then L latey i~ = ||uol|2 For wll t« (0.Y). a

-~

the other hand, if <ul,u°> > 0, then on [O,T),llu(t)ll2 is bounded below
by a monotonically increasing exponential function of t. Finally if
<uo,u1> < 0 then Ilu(t)ll2 can not decay any faster than a monotonically

decreasing exponential function of t. Our results are summarized as

Theorem III1.4 Let ue N be any solution of (2.17), (2.18) with U, # 0,
o < 0, and B(t) = 0 on [0,T). Assume that M(0) satisfies (3.2a) and (3.2b).
Then

(A) If the initial data satisfy (3.66),I|3(t)|l is bounded above

by lluoll according to (3.68b), 0 <t < T

(B) If the initial data satisfy (3.66) then there exists K(a) such

that for all t, 0 £t < T,

Hue) 117 2 1lu 17 explk(@) a-e”/%1), (3.70)

s

Sl i




S,

e o s m—

=38

where for each real a, K(a) is real-valued and
(i) K(a) = O if either u, = O or <u°,u >=0
(ii) K(a) > O if <u°,u >>0

(iii) K(a) < 0 if <u°,u1> <0
and

(iv) IK(a)| = 0 as |a| = =,

Remark The cadse u # 0, a > 0, and B(t) = O can be treated in the same
manner as Case III; in fact, from (3.50) (which was derived under the
assumption that u, = 0 with a > 0) we can write down immediately the

differential inequality

FF“ - FIZ

for the case where ug ¢ 0, a >0, but B(t) = 0; in (3.71) ; is defined by

(3.51). Suppose we set Y = 0; then if the initial data satisfy
2 -
(1+ 4GT)||31|| - <E°,Ego> < - (u+ 4aTha(T))
the above differential inequality reduces to
F(£)F"(t) - [F'(£)1% 2 aF(£)F'(t), O st <T, (3.72)

where F(t) -Ilu(t)llz. We leave the integration of (3.72) and the analysis
of the resulting estimates on Ilu(t)ll2 to the reader and turn, instead,

to consider a case where both u # 0 and B(t) Z O.

Case IV u, # 9, B(t) 20, a <0 and B(0O) >0

In this case (3.3) is easily seen to imply that

5 < 2F(|Iu1I|2 - <u_,Lu >+ ) + oFF' (3.71)

- sncay




|
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FF" e F'z

+ 2F(2f 5 B(r)<u,u >dT - B(£)<u,u >) +4FB(O) | u |17
= - 2F(2EO) - 28(0) 11u 11® + ) - la|FF’
+ 2F(2f; é(r)<3,3°>dr - B(t)<u,u >)

In order to proceed further we must bound from below the third expression
on the right-hand side of the differential inequality (3.732); this is

accomplished by the following lemma:

Lemma Suppose that 8(t) is bounded on [0,T) for each fixed T, 0 < T < =,

Then there exists a constant C > O such that

t o
2[ B(t)<u,u >dr - B(t)<u,u > 2 - Cllu ||, 0st<T (3.74)

Proof We set p = sup IB(t)| < ». Then

[o,T)
f; é(T)<E(T). u >dt| = <f; é(T)B(T)dT. u > (3.75)
s 8 [l ianiiu 11
< p(Jgl1uM11aD 1y 11 < puNT] lu ||
80
[g B(x<u,u >at > - puNTIlu |1, O<t<T (3.76)
Also

IB(t)<u,u >| < [B(t) [+ [<u,u > < wNIB(E)[=]lu Il

< wN fg B(1)dt + B(0) u 11 < wN(pT + B(0)) | lu I}

2 - 2F(2E(0) + u) - |a|FF' (3.73)




=

- B(t)<g.g°> 2 - wN(pT + B(o»llgoll, 0<t<T

Combining (3.76) and (3.78) we obtain (3.74) with

C = wN(3pT + B(0)) > O

(3.78)

(3.79)

We now return to (3.732); in view of the last lemma this latter inequality

implies that -

2

FE" - F'2 2 - 2F(l w117 + Q) + W) - lalFF?

where Z: H - R is defined by

I = 2801wl Ggegy - !wl) = <w,lw>, wed,

If we set Y = O then (3.80) reduces to

F(OF"(e) - [F'(1% 2 - 27 (1 112 + [@) + i) - lalF(e)

2 - 2
with F(t) = ||Ju(t)||” and 4 = wN" sup |IM(t)]]
- G - bR

and we have the following result:

Theorem III.5 Let u € N be any solution of (2.17), (2.18) where ul # 0,

(3.80)

(3.81)

(3.82)

B(t) 2 0, a < 0, and B(0) > 0. Assume that §(0) satisfies (3.2a), (3.2b)

and that é(t) is bounded for 0 < t < T. Then if the initial data satisfy

Hu 112+ J) < - i,

where Z is defined by (3.81), ||u(t)|| satisfies the estimates (3.68)

and (3.69). In particular, if u, = 0 and E(uo) < - u then

(3.83)




llu(t)I|2 2 Iluoll2 for all t, 0 <t < T.

Remark We leave for the reader the consideration of the other cases

possible when u, # 9 and B(t) # 0, e.g., & < 0 and B(0) < 0; the stability and
growth estimates which apply in these situations may easily be derived by
suitably modifying the last lemma and making use of the basic differential

inequalities derived for the previous cases.

4. Applications to Bounds for Electric Displacement Fields

In order to apply the results of the previous section to solutions of
the initial-boundary value problem (2.1), (2.10a), (2.10b) (associated with
the constitutive relations (1.16a), (1.16b)) we must delineate the form
assumed by the basic hypothesis (3.2a), (3.2b). In other words, for the
operator y(t), which is defined by (2.14b), we wish to examine the implications

of the requirement that

2
- <MW 2 kllvIIZ, v e BL@) (4.1)

2 H
o

with ¥ 2 wT sup ||M IIL(Hl H—l). From (2.14b) and (2.11) we easily
fo,7) ~ o’

compute

<Y,§(O)Y>H = - In(g(o)y)ividf = - bOW(O)fQG v,v. dx

154§ ~
b° azv
+ 5 00, Syt B ox, V19X _
o 3K ‘
1
o 2 bO Bzvk |
=-b YO Ilvlly+ a, 2(0)f8,85p %N v, dx

for any v € Hi. But if v € Hi then

I PR PR TRy v
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Fiae AN s
v dx = dx (4.3)
9! ik L ijaxl Q3L Yk ox, 0%, Jaxz 2
oV, 9V
k 2
-] 8, t et dx .- jivi]
2 "jL axj Bxc = = H1

o

where we have used integration by parts together with the fact that

t <€

vanishes on 33(3). Thus

. b
- <, M©O)v> = - b ¥ IvI13 - 2 *@ 1yl s, 4.4)

> - b WIHO + 2 o) IviI]
o o +

Therefore, (4.la) will be satisfied if

- b WO + 2 0(0) 2 & 4.5)
o

with k 2 wT sup | |M || For the sake of convenience we now set

fo,ry -t L@E,HE)’
T(t) = W(t) From (2.14b) again we have,
. azv
i el -109) K 1
(ytg) bo[T(t)Gijvj 2 61k6j£ axjaxlj » Ve H (4.6)
80
I<v, M v> | = |[ M v] v, dx]| (4.7)
. 2 bo * azvk
= Ib T(t)lIvily - § o(e) [o8 307 axjax dx|
° 2 1 -4 2
= b IT() Hivlly + = o(®)livily
o A
< b @I | + f;l&(c)l)llgl |§+

(3) This follows from the definition of Hi and a standard trace theorem.
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It now follows that for each t, 0 < t < T,

|<v,M v>| i R
|lM IIL( H_) = sup ":—:—i" < bo(w IT(e)| + ;:|¢(t)|) (4.8)
H

Thus, (4.1b) will be satisfied if

“ meo(w sup |T(t)] +;l- sup 18(t) 1) (4.9)
[0,T) fo,T)

Combining (4.5) and (4.9) we find that a condition which insures the validity

of (4.1) is

- W11 ] +— 8(0)) 2 wI(w? sup |T(t)] +ai sup 1&()]) (4.10)
. [0,T) o [0,T)

It is clear, from (4.10), that this inequality can be satisfied only if
®(0) < 0 with |9(0)] > aowle(O)l. It is worthwhile, at this point, to

recall the following result which has been proven in [6]:

Lemma Let ¢(t) € Cl[O,T) and assume that the series defining ¢(t) as well
as the derived series, which is obtained by term by term differentiation,
are uniformly convergent on every interval [0,T-e], O < € < T. If

sup |¢(t)| < a /T then

[0,T)
(1) sup |®(t)| < F(T) (4.11)
[0,T)
sup |$(t)]
(i1) sup l&(t)l < f{gi- 1+7T LQ*ELT—(——T (4.12)
’ [0,T)
where
F(T) = sup |¢(t)|/(a - T sup [¢(t)]) (4.13)

[0,T) [o,T)
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Remark Similar results hold for sup |¥(t)| and sup I@(t)l, of course,
[o,T) [o,T)

under analogous assumptions on Y(t) and the series defining ¥Y(t), e.g.,

we require that sup |Y(t)| < bo/T; the constant F(T) appearing in (4.11),

[0,T)
(4.12) would, in this case, be replaced by |

G(T) = sup Iw(t)l/(bo - T sup [Y(t)]) (4.14) |
[0,T) [o,T) |

In recalling the above lemma we have been motivated by a desire to
replace the sufficient condition represented by (4.10) by a condition
which involves only the basic memory functions ¢(t), Y(t) specified in the
constitutive relations (1.16a), (1.16b). To this end we note that the
equations defining ®(t) in terms of ¢(t) and ¥(t) in terms of yY(t) imply,

respectively, that

o(t) + —alo- o(t) = - é [§ o(e-n0(nan (4.15a)
1 1 ¢t

¥(t) +3- 9(t) = - & [ ¥(e-D¥(D)dT (4.15b)
o o

From (4.15a) and (4.15b) we immediately nbtain

8(0) = - 2 6(0), ¥(0) = ~ 2~ ¥(0) (4.16)
[0} o

and thus (4.10) can only be satisfied if ¢ (0) > 0. Directly from (4.15b)

we now compute that

(o) + - (o) = - -bl— POI¥(t) - -bL [gb, (DY (D)dr (4.17a)
o (o] o

o 1 w 1 " 1 e

¥(e) + 5 v(e) = - = W (0)¥(e) - = Y(0)¥(t) (4.17b)
(o] o o

1 ¢t
- 3;- fowtt(t-'r)‘}’('t)d'r




Therefore,

¥(0) 2 T(0) = - & (O + ¥(OF©) + J(©O)¥(0)

o

However, from (4.16) and (4.17a),

¥0) = - 2= §(0) - & V(O¥(©) = - - §(0) + =5 ¥7(0)
o o b

(o]
o

Combining (4;162) and (4.192) with (4.18) we have, finally,

-1 .3 2 . "
1(0) = - ii: (S v -+ ¥(0)y(0) + y(0))

b o
o

The left-hand side of (4.10) now assumes the form

2
2 $(0) - e | == W 0) - "'W(O)w(O) + W(O)I
3 ° o
We now turn our attention to the right-hand side of (4.10).

(4.17b) we obtain

o) = - 3= @ + vOTE) + HOiw)

o

+VO¥(®) + [T v, (=¥ (D)dT)

sup [T(t)| <—[ sup |P(t)| + 1Y(0)| sup |P(t)|
[0,T) b [o,T) [o,T)

+ (19(0)] + T sup 1Y(t)1) sup 1¥(t) 1]
[0,T) [0,T)

while, by (4.22),

Directly from




&
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. 1 (3)
sup IT(t)| < E_{ sup Y "7 (t)| + Y(0) sup IT(t)]| (4.24)
[0,T) o [0,T) [o,T)

+ 3(0) sup 1¥(E)| + (19O + T sup 1930 (e) 1) sup 1¥(e) 1)
[0,T) [0,T) [0,T)

If we substitute for sup |T(t)| in (4.24) from (4.23) we obtain an estimate

[0,T)
of the form
sup |T(t) | <A sup |¥(t)| + B sup |¥(t)| + C (4.25)
[0,T) [0,T) [0,T)

where, the constants A,B, C are given by

A= s WP ©1+ 15O +l‘&)—L Ui 1 + T sup 192 ()1
o [0,T) [0,T)

2
B =214 + %9-13
(o]

o

¢ =2 sup WP (o)) +—|w(o>| sup 1v® ()12
o [o,T) [0,T)

As a result of the estimate (4.25), the right-hand side of the inequality

(4.10) is bounded above by the expression

WT@ sup [¥(0)] + B sup [¥()] +0) +4L sup 3(0)[, (4.26)
[0,1) [0,T) o [0,T)

which, in view of the preceding lemma, is itself bounded above by

sup [P(t)]

D = WwITLAG(T) + BGJTH(l +T Iﬂﬂllw) +C] (4.27)

£o,m

; sup |§(t)]
w $T2 |0,T2

AR e sup)l¢(t>l)
[0,T

o
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a b 1
provided sup |$(t)] <-i? and sup |Y(t)] <-ig .
(o,T) [o,T)

From (4.27), the definitions of the constants A, B, C, (4.13), and (4.14),

it is clear that

D=0, by, WP @1, swp 169701, s v )D) (4.28)
(o,T) (o,T)

with i = 0,1,2, j = 0,1, and k = 0,1,2,3. Thus, D is computable once

2, T > 0, and the constitutive relations (1.16a), (1.16b) are specified.

Thus (4.1) will be satisfied provided

2 1

: 1 w o3 2 . -
; ;§'¢(0) g ;5 v (0) - ;; v(O)Y(0) + y(©)| 27D (4.29)
3 o o

: - We offer below an example of the kind of considerations which are %
involved in verifying that (4.29) is satisfied. |

1

:

!

Example In the constitutive equations (1l.16a), (1.16b) we take

o(t) = e N, y(r) = e " (4.30)

where K > O is arbitrary; for the sake of convenience we set T = 1. The
region Q §,R3 (and hence the embedding constant w) are left arbitrary at

this point as are -he constants a s bo' From (4.30) we have

i AR i i i s

: $(0) = sup [¢p(t)] =1, sup I§(t)] =K (4.31)
- (0,1) [0,1)
and
sup W™ (o)1 =1, k= 0,1,2,3 (4.323)
[0,1)

W) = $(0) = 1, ¥(0) = -1 (4.32b)




Therefore, the constants A, B, C in (4.25) are given by
2 1 1 i 6

A 5 1+ T ), B=2C y (L =+ b )
o o o

Also, if a >1, bo > 1, then from (4.13) and (4.14)

1! 1
;;:I , G(1) = —— (4.34)

PRy - b_-1

2 o I WY i N At i B e

Combining our results it follows that (4.29) will be satisfied if a s bo,

and w are chosen so as to satisfy

EWRTT LR DA T o= 1) (4.35)
2 a (a-1) 2 b-1 b 2. 7b .

ag o o b° o bo

As b° must be restricted to satisfy bo > 1, the right-hand side of (4.35),
which we denote as c(bo,w), is clearly positive. Thus, in order for (4.35)

to be satified for an arbitrary a° > 1, w must satisfy

e A~
o T R T AR S M NI i SR S AR SR A

1 1 1
; w=uw <7g @ - ao) <3 (4.36)

If we now choose ) so that (4.36) is satisfied and define

o mK(1+K)
o(ao’ wK) i R (a -1)
a_ o o

N R -

then (4.35) becomes

o(a s we) >0(b_, w)

1lim o(bo, w) = 0 (for any w > 0)
b°»+m

w, defined by

and thus it is clear that for an arbitrary a, >1 and w = K




(4.36), the inequality (4.35) will be satisfied if bo is chosen sufficiently

large. We summarize our results in the following lemma:

Lemma Consider the holohedral isotropic dielectric material which is defined

by the constitutive relations

D(x,t) = a EGx,t) + [¢ e D, 1)dr (4.39a)

H(x,t) R

b B(x,t) + [ e B(x,T)dT (4.39b)

where K > 0 and a > 1 are arbitrary and (f't) € 2 x [0,1) with Q E.R3 chosen
so that the bedding constant w, defined by the inclusion map of Hi into LZ’
satisfies (4.36). If P(f’t) = 9,(x,t) € 02 x [0,1), then there exists a
constant I' > 1 such that the operator y(t), defined by (2.14b), satisfies

the basic hypotheses (4.1) whenever bO >T.

5. Relation to Previous Estimates for Holohedral Isotropic Dielectrics

In the present paper we have considered a special case of nonconducting
holohedral isotropic dielectric response under the assumption of zero past
history, i.e., E(T)=0, E(T)=0, - © < T < 0; our constitutive relations were,
therefore, of the form (1.16a), (1.16b):; using a logarithmic convexity ‘
argument we then derived growth estimates for the time evolution of the com-
ponents of the electric displacement field in a dielectric which conforms to
these constitutive hypotheses. In a recent work [11] we have derived different
estimates for a closely related problem. Namely, we consider in [11] a
holohedral isotropic material dielectric of the type (1.15a), (1.15b) with

au=0, bU=0, v>1 but with past history of the form
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(0 y mELES - £
E(x,t) =4~
ot E. (x,t), —thst<0
(5.1)
0 , ~© <t<-t
B(x,t) =§ "
zB(xJ),—thst<0

where th>-0 is a given positive constant and Eh’ Bh satisfy appropriate smooth-

ness assumptions on X (—th,O). The constitutive hypotheses in [11] then take

the form

D(x,t) = aj E(x,t) + [ 0(e-DE(x,T)dr
(5.2) bt o b i B

t
H(x,t) b, B(x,t) + f_tw(t-T)B(x,T)dT
. o

on § x (-th,T), and, in place of the evolution equations (2.1) considered in
the present work, we obtain, under the additional assumption that D (x,-th) = 0,

uniformly on 2, the evolution equations

azni 8, - . aznk
ozt WO S TRONE, < ot B
ot il )
s b 2%, (1)
+ J-th(q’(t-T)Di(T) - ;: q)(t-T)Giijl -5;{3&1—) dTt=0

for i = 1,2,3 with goibo/ao@(O). The same Hilbert space formalism used in

the present work then leads in [11] to consideration of abstract initial-

history value problems of the form (2.17),(2.18) but with B(t)=0 and with

the integral operator defined on [-th.T) instead of [0,T). The basic differences,
however, between [11] and the present work are as follows: In [11] we con-

sider initial-history value problems corresponding to varying initial displace-

ment fields and varying past histories, i.e.,

B N P P I . 71 T T
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i ua + TuOL - N ua + ft K(t-T)uu(T)dT‘O, 0<t<T
| et t ~ =ty ® < :
3
S P o a>0
(5.4 @ O=ay,u 0=y  {

v
B3 € H+)

\ ua('r) = U(1), -t,. <1< 0

h
and _
Bst i rgf - N EB > fft E(t-T)gB(T)dFQ, 0<t<T
h
5.5 | f©@=u, =y >0
P > I ~0 :
s :
(S (T)—g(B)g(T),—th< T <0

where g is monotonically increasing on [0,~). The basic aim of the work

ol

in [11] is not to derive growth estimates for the time evolution of ||u(t)]] i

but rather to derive lower bounds for sup Ilga[|+ ( sup IIEB[]+) in terms

of a(B) and the data of the problem: the conditions (3.2a),(3.2b) in the

B O Y T TP S T T L v e

g present work are weakened, in [11] to simply

(5.6) -<y,K(0)y>20,VyeH |

and the a priori condition that u € N (a class of bounded peturbations of the
kind prescribed in §1) is dropped in [11] as logarithmic convexity is not
employed to derive the desired estimates. Additional assumptions are made,

however, in [11] relative to the data and the integral operator; namely,

(171 1xeo1] ar <o, [IK (O] gree
° L (H,,H) JIx; L_(H,,H)

7

{0 L, Nuo] e es
(5.7) <go,zo>>0, <20,§20> >0, and

Lo fth K (-T)U(1)dt> < 0.




For the initial-history value problem (5.4) we then have the following

result in [11]: Let Ea be a strong solution to (5.4) with

2 2
He 17 s F <u»y.>
(5.8) \\
2<u ,v >
¥ % & i w0

2 \
o %o Ral Wiy,

Then for each a > ||g°|l/<g ,§u°>;5
|<50,jfth K(-)U(T)dr>[] %

6.9 s |1, o
L‘thQT) o ET -

where

R T e

+ 1fol K @] L a, ,m )9

A similar result follows for the problem (5.5), with varying past history,
under analogous assumptions. The basic idea behind the proof of the estimate
(5.9) is as follows: Assume that (5.9) is false for some parameter value

a > onll/<_g°,‘rj‘go>;5 and show that Q_(t)-l]ga(t)||2 satisfies the differential
o
inequality

(5.11) F F "-(a+1)F"2- TF F_', O<t<T
o a o oo
which, in turn, implies that

(5.12) (1) > F0)[1 - (-e” Syar' (0)/TF_(0) 17"
a a a o]

The bracketed expression in (5.12) vanishes at

1 . Yo’
(5.13) tF T 1o ¢ 3

2<u ,y >= Tlly ||
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and t_<T by virtue of the hypothesis (5.8). Thus sup ||ua||- + @ ]
(-th ’T)
and via the embedding of H_ into H this implies that sup [u®]|= +
-t ,T)
h)

contradicting the assumption that
3 ,l<uo’fgt K(-1)U(1)dt>| &
sup |[u®]], | . T
(=t;»T) f w

——

and, thus, establishing (5.9). Estimates of the type (5.9) can be very
useful in terms of deriving estimates for physical parameters which enter
the definition of the integral operator; in this vein we refer to a recent
work [12] on Maxwell-Hopkinson dielectrics where estimates of the type (5.9)
have been shown to lead to bounds for constitutive parameters appearing in
the memory functions of such materials.

In a more recent work [13] initial-history boundary value problems

associated with (5.3) have been reconsidered with a view toward deriving

asymptotic lower bounds on the norms of the electric displacement vector

when the operators in the equivalent initial-history value problem do not

satisfy the requisite coerciveness conditions that imply asymptotic stability

*
[14]. 1In fact, it is shown, in [13], that solutions u € N of the present

*
abstract initial-history value problem (N -{xezc([-th,w);ﬂé)l

sup [|v|| 1 < N} for some N > 0) satisfy the differential inequality
[-t, ,®) -

h’

"_ x4 ' 2
(5.14) FF (22‘3) F'> - IFF', F =||E(t)||L2

for any B > 0, 0<t<®, provided E(0)=%||v IIL —<u_ N > < 0 with
2

|E(0)|> ZWN [IIKIIL o, °°)+||K|,L [0, i]where we assume that (5.6) holds, and in

addition, that




K(t)

HIS(t)HL ut, g1y satisfies K(+)el,[0,=)
s 0’

(5.15)4 K(t) IHECHLS(Hé’H-l)dT satisfies

K(*) L,00,®) with K0 = 0

The differential inequality (5.14) then yields the estimate
2<y ,v >
2 2 el
(5.16) lim | lu@ || 2 g |} exp{ —=
t>r+ 2

2
I‘HEOHEZ

so that lim lim ||2(t)||i 2 ||u ||i . In fact, the sharper estimate
I>+o tr+o 2 o

2(1-A)<u _,v > 1

2 ~o’~o0 L \ -Ted 15

.17 [lull? 2[ g (12 h+ = |(1-e “_J B
2 2 Mllgglly, / I
~0 'I~"v2 o

is shown to obtain in [14] for all t > 0 and any A, % < A < 1. Thus the L2

norm of u is bounded from below as t+>+> even as the damping becomes

arbitrarily large.
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